Subscribe

RSS Feed (xml)

Powered By

Skin Design:
Free Blogger Skins

Powered by Blogger

Friday, May 16, 2008

Going Decaf... from chemistry notes

Several months ago, Justin P. Gallivan gave quite an entertaining seminar for the chemical biology department. While I'm officially a member of the organic division, I really enjoy the biological side of things, so I try to attend these seminars as often as possible (or sometimes I attend them when my boss sends out an email "please attend," which really means "required seminar"). If I remember correctly, Prof. Gallivan did a little "bacteria dance," and if a speaker goes that far to get our attention, he has my respect :o) His lab actually has done some extremely interesting work, and I've been waiting for a publication to come out ever since that seminar.
Last week, the article "Guiding Bacteria with Small Molecules and RNA" finally appeared in JACS. E. coli have 5 chemoreceptor proteins and thus can maneuver their way through complex chemical environments. While they naturally perform chemotaxis toward 30+ compounds, it would be useful in terms of bio-nanotechnology to reprogram these bacteria to respond to new and unique chemical signals. The pathway responsible for converting chemical ligand binding into a change in direction of the bacteria consists of 6 chemotaxis proteins, with the protein known as CheZ ultimately responsible for bacterial motility. With this in mind, Shana Topp from the Gallivan group created a theophylline-sensitive synthetic riboswitch to control translation of CheZ; without theophylline, the conformation of mRNA prevents translation of CheZ, forcing the bacteria to tumble in place. Once theophylline is added to the mixture, the mRNA adapts a different conformation in which the ribosome binding site is open, which allows for expression of CheZ and forward movement of the bacterial cells. Caffeine, which has a structure similar to that of theophylline, did not elicit a response from bacteria, indicating that the observed changes in bacterial motiliy are dependent on the riboswitch. As Topp and Gallivan jokingly state, "E. coli pick decaf!"

No comments: